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Abstract. Stochastic models are presented for the structure and conditioning of pads used in chemical-mechanical
polishing of wafers. First the one-dimensional distribution function of surface depth in the case of a conditioned
solid pad is described. Then, for characterizing the structure of a foamed pad, the theory of random closed sets
is applied. An important distributional characteristic of a random closed set, the linear contact distribution func-
tion, yields the contribution to surface depth resulting from pores. As a special example the Boolean model is
considered. This leads to a formula that describes the variability of the surface of a conditioned foamed pad after
a certain time. Simulations and experimental data show a good agreement between theory and reality.
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1. Introduction

The problem of polishing surfaces is a standard problem in various industries. There exists
an extensive literature about rough surfaces and their polishing written by engineers, e.g. [1,
Chapter 8–10], [2, Chapter 7–9] or [3, Chapter 4]. It is particularly important for the semi-
conductor industry because wafers must be very smooth. Namely, in the production process
of integrated circuits lithography [4] is used to mark a pattern on the wafer surface, and this
pattern cannot be exactly reproduced on the wafer surface if the wafer has excessive topo-
graphy variations.

Today, chemical-mechanical polishing (CMP) has been widely accepted as a planarization
process in the semiconductor industry. In that procedure a wafer is pressed against a rotating
polishing pad, while a chemically-reactive slurry is sprayed onto the pad ahead of the wafer.
The combination of slurry, pad roughness, pad motion and wafer motion is understood to be
responsible for the planarization of the wafer surface, see for example the models in [5–7].

Because of the importance of the pad in polishing processes, many papers deal with this
theme. Yu et al. [8] present a statistical description of pad roughness, where they also describe
the interaction between pad and wafer, whereas the pad developement during polishing pro-
cess is not considered. In Bajaj [9] this problem is investigated experimentally, pads are exam-
ined under different polishing conditions as well as different pads under the same polishing
conditions. It was found that “the initial removal rate increases linearly with applied stress;
however, rates of drop in polishing rate [. . .] decline much more rapidly at conditions of
high applied stress”. Pads with higher pore volume show higher initial polishing rates; the
decrease of polishing rate, with progress of polishing time, is related to a decreasing number
of open pores [9]. Therefore closed pores have to be opend again to reduce the decrease of the
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polishing rate. So an additional process step was introduced in CMP: conditioning. There a
conditioner (a rotating plate covered with cutting elements, e.g. diamonds) is held against the
pad for maintaining its roughness; glazed areas on the pad surface, generated during polish-
ing, are broken up and the open pore volume is increased. For reaching a uniform polishing
performance, the amount of conditioning should be the same for all points of the pad, as
emphasized by Hooper et al. [10].

Following these results some further questions remain open, especially what the “ideal”
pad surface is and how it can be obtained; “ideal” means low surface roughness of polished
wafer and constant high removal rate. Therefore a model describing pad and conditioning
parameters and their influence on the resulting pad surface is needed as a basis for further
optimization of polishing processes. Borucki et al. [11] presented an excellent mathematical
model for conditioning and wear of solid pads and made first steps also for the case of
foamed pads. Based on his model, the present paper considers the case of a foamed pad,
which is the typical case in industry. A formula is derived which describes the variability of
the surface of a conditioned foamed pad after a certain conditioning time, taking account
both of pad and conditioner properties.

The paper repeats first the simplifying assumptions of [11]. Then, in Section 3, the one-
dimensional distribution function of surface depth in the case of a conditioned solid pad
is re-derived. Models for the structure of foamed pads are described in Section 4, namely
random-set models. Finally the results of Sections 3 and 4 are combined in Section 5 lead-
ing to a formula for the distribution function of surface depth in the case of a conditioned
foamed pad. In Section 6 the stochastic-model assumptions are verified by experimental data.

2. Basic assumptions

The pad surface is modeled as a (piece of a) homogeneous (stationary) and ergodic random
field {Zn(x)}, where x stands for a position on the pad surface. Often x is given in polar coor-
dinates x = (r, θ) with 0≤r ≤rpad and 0≤θ ≤2π . Zn(x) is the surface depth of the pad at the
point x at time n. The discretized time n depends on the rotation speed ω of the pad.

The coordinate system is chosen such that the starting value of the pad surface depth is
Z0(x) ≡ 0. The conditioning process increases the depth and therefore in the present paper
Zn(x) is non-negative. Since we assume stationarity, the one-dimensional distribution function
of the random field:

Fn(z)= P(Zn(x)≤ z)

is independent of the position x . In the following considerations we fix x and hence suppress
it in the notation, i.e., Zn = Zn(x).

The approach in [11] for modeling the conditioning process is followed and the effect of a
conditioner disk is approximated by the effect of a one-dimensional bar conditioner. The N
cutting elements of the disk are assumed to be arranged on a line with mean spacing l, l ≤
rpad, (Figure 1). The point x encounters this simplified conditioner once per pad rotation. At
each rotation the cutting elements displace independently from each other in their intervals
of length l.

Under the simplifications described above it is sufficient to look at a fixed pad segment of
length l. This segment lies on a ray of direction θ0 ∈ [0,2π ] starting from the center of the
pad. The segment center is taken as origin, denoted as (0, θ0), and the segment is represented
by the interval (−a, θ0)≤ (r, θ0)≤ (a, θ0) with 2a = l. For simplification of notation the fixed θ0
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Figure 1. Schematic picture of the simplified condi-
tioner with triangular cutting elements reacting on the
pad surface.

Figure 2. The profile of a triangular cutting element is
given by two parameters of the opening angle α, the
depth h and the width l =2a. In a first step of condi-
tioning (thick line) the cutting element center M1 lies
at 0. At the point r it generates the depth V1(r). In
a second step (dashed line) the center may fall to the
point M2. Then the depth at r is now V2(r), which is
the maximum of the two depths V1(r) and V2(r). In
the case drawn here it is Z2 = V2(r).

is omitted. The interval −a ≤r ≤a contains a cutting element at each rotation, and the center
of the cutting element is uniformly distributed in [−a,+a].

For the calculations in this paper the conditioner stays at a fixed depth. For the case of a
conditioner that moves in a deterministic manner into the pad the derivations in [11] can be
applied.

3. Conditioning of a solid pad

As justified in Section 2, the considerations can be restricted to the interval −a ≤ r ≤ a. One
cutting element encounters this interval once during a step (rotation). Borucki et al. [11]
model the cutting elements, e.g. diamonds, by a saw-tooth function lying above the pad. (At
the end of this section a generalization of the shape follows.)

The profile of one triangular cutting element (Figure 2) can be described by the following
function, where the cutting tip lies at 0:

V (r)=h − h

a
|r |, −a ≤ r ≤a, (1)

with V (r) as the depth of the diamond in r . Here depth h and width a are the size para-
meters of the one-dimensional bar conditioner. Equation (1) is the same as (2.1) in [11] in
other notation.

Since the center Mi of the diamond at time step i is uniformly distributed in [−a,a] (Fig-
ure 2), the depth of the cutting element Vi in r at time i is also uniformly distributed, due
to the relation Vi = V (r − Mi ) and the assumption of periodic boundary. The corresponding
distribution function is

F1(z)= z

h
, 0≤ z ≤h.

During n time steps n cuts happen at the fixed position r . The cutting depths V1, V2, . . . , Vn

are independent and uniformly distributed. By taking the maximum over V1, V2, . . . , Vn the
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surface depth Zn after n steps is obtained (Figure 2). Thus, the distribution function of the
surface depth Zn of a solid pad by interacting with a conditioner is:

Fn(z)= F1(z)
n = zn

hn
, 0≤ z ≤h. (2)

The corresponding probability-density function is

fn(z)=n
zn−1

hn
, 0≤ z ≤h. (3)

The function Fn(z) can be rewritten as

Fn(z)=
(

1+ 1
h

(z −h)

)n

, 0≤ z ≤h. (4)

Equation (4) is the same as Equation (3.3) in [11] in other notation. Note again that, when
comparing this result with [11], the surface depth here is considered as a positive rather than
a negative variable.

For small values of the term z−h
h the distribution function (4) can be approximated by an

exponential function, using the well-known approximation (1+ x)n ≈ exp(nx):

Fn(z)= exp (λ1(z −h)) , for z ≈h, λ1 = n

h
. (5)

Figure 3 shows the probability-density function (3) of surface depth of a solid pad after
n =6 time steps with a cutting element depth of h =5 µm.

In the case of a general shape V (r) of cutting elements (instead of a triangle) the distri-
bution function F1(z) of the random cutting depth Vi in the ith step is given by

F1(z)= ν({r : V (r)≤ z})
2a

, −a ≤ r ≤+a,

where ν is the Lebesgue measure and V (r) the depth of the cutting element in r .
In some industries, for example, brushes are used as conditioners. The brush conditioner

can be imagined as a plate with bristles instead of diamonds. The edges of bristles are
rounded (so the resulting cut is smoother). The shape of such a cutting element can be mod-
eled as the following quadratic function

V (r)=− h

a2
r2 +h, −a ≤ r ≤a.

Then the distribution function of surface depth becomes

Fn(z)=
(

1−
√

z +h

h

)n

≈ exp

(
−n

√
z +h

h

)
.

4. Random closed sets as models for foamed pads

Pads used in industry are typically not solid but porous. So one is confronted with a
two-phase-medium with a solid and a void phase and it is natural to use models of stochas-
tic geometry, where the solid phase is considered as a random closed set Ξ, which is assumed
to be stationary [12, Chapter 6]. This means that Ξ is infinitely extended in the whole space,
with the same random fluctuation everywhere. In the space a coordinate system is used with
origin o, which choice is arbitrary.
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Figure 3. Probability-density function of surface depth
of a solid pad after n = 6 time steps, given by Equa-
tion (3). The depth of the cutting elements is h =5µm
as in [11].

Figure 4. The random closed set Ξ is shown in grey.
If o does not belong to Ξ consider the vertical line L
from o to the first contact with Ξ. The length of this
line segment is a random variable with linear contact
distribution function.

An important parameter of a stationary random closed set is its volume fraction p. It
characterizes the mean volume occupied by Ξ in a region of unit volume. In the given case,
1− p corresponds to the porosity of the pad. Because of stationarity it is

p = P(o ∈Ξ)= P(x ∈Ξ) for all x, (6)

where P(o ∈Ξ) denotes the probability of o belonging to Ξ.
For the determination of p often stereological methods (see [12, Chapter 11]) are used,

based on the formula

VV = AA = L L = PP = p, (7)

with VV as volume fraction (“volume per volume”), AA as area fraction, L L as line frac-
tion, and PP as point fraction. This means that for any arbitrary one- or two-dimensional
cross-sections of the pad volume, the fraction of filled (or empty) space is always the same.
Formula (7) is true in the case of stationarity. For example, p of a stationary three-dimen-
sional set can be obtained from planar sections yielding AA. Further explanations of stereol-
ogical methods can be found in [13, Section 3.2] and in [14, Chapter 2].

An important distributional characteristic of a closed random set is its linear contact dis-
tribution function Hl(s). It can be explained as follows. Consider the origin o of R3. There
are two cases: either o lies in Ξ or o does not belong to Ξ. If o does not belong to Ξ, we
consider a vertical line L starting in o. The first contact of L with Ξ happens within some
random distance (Figure 4). The length of the corresponding line segment is a random vari-
able, the distribution function of which is denoted by Hl .

A popular model for a random closed set is the Boolean model; see [12, Chapter 3]. In
the following this model is used both for the solid phase and its complement, the void phase.

A Boolean model is constructed as follows. There are two building elements:
(1) Φ= x1, x2, . . . a stationary Poisson process in R

d of intensity λ,
(2) Ξ1,Ξ2, . . . a sequence of independent identically distributed random compact sets in R

3,
which are independent of the Poisson process Φ.

Then the set

Ξ=
⋃

xi ∈Φ

(Ξi + xi )= (Ξ1 + x1)∪ (Ξ2 + x2)∪ . . . ,
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Figure 5. A Boolean model with elliptical grains.

Figure 6. In this schematic picture the pad has elliptic pores. The bold spiky line presents the surface depth Zn

assuming a conditioned solid pad. At point r1 the cut passes in the solid phase and the surface depth Z∗
n (r1) is the

same as Zn(r1) in case of a solid pad. At point r2 the cut hits a pore. Consequently, the surface depth Z∗
n (r2) is

now the sum of the depth obtained by conditioning and the residual chord length in vertical direction in the pore.

is called a Boolean model (Figure 5). The points of the Poisson process are called “germs”
and the sets Ξi “grains”. The Boolean model is stationary and, in the case of isotropic dis-
tribution of the sets Ξi , isotropic.

The linear contact distribution function Hl in case of a Boolean model with convex grains
is an exponential distribution of parameter λ2:

Hl(z)=1− exp

(
−λ

W 1bd−1

bd
z

)
=1− exp(−λ2z), z ≥0,

with λ as the intensity of the Poisson process, bd as the volume of unit sphere in R
d and W 1

as the mean value of the first Minkowski functional of Ξ0.
To take a Boolean model for the solid phase of a foamed pad is perhaps not the best solu-

tion, since it would be considered as the union of many small objects. A more realistic alter-
native is perhaps the converse case, where the set of pores is considered as a Boolean model.
Then the solid phase is the closed hull of the complement of a Boolean model.

Ramı̀rez and Rider used just the latter model for describing the pad structure in [15]. They
encountered the problem of needing to derive a formula for the corresponding linear contact
distribution function, which is a notoriously difficult problem that cannot be solved in closed
form. An exact analytical expression only exists for the case d =1 (see also [16, pp. 127 and
238]). In higher dimensions [16, p. 127] refers to a methodology that amounts to inverting a
Laplace transform.
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Fortunately, general statistical experience has shown that the linear contact distribution
function is very often an exponential distribution or at least close to. This is equivalent to
an exponential form of the covariance ([12, p. 205]). This empirical observation has led to
coining the term ‘set with exponential covariance’ ([13, p. 145] and [12, p. 205]).

So it can be concluded for both applications of the Boolean model and for many other
random closed sets that the linear contact distribution function is (approximately) exponen-
tial; see also Section 6.

Note that the statistical estimation of the model parameters p and λ2 is straightforward.
For the estimation of p stereological methods can be used and for the estimation of λ2 meth-
ods of image analysis or the classical lineal method. There the random closed set is inter-
sected with a line. The lengths li of the chords outside of the random closed set are measured.
The mean chord length l̄ yields an estimate of λ2:

λ̂2 =1/l.

5. Conditioning of a foamed pad

After considering the conditioning of a solid pad (see Section 3) and the structure of a
foamed pad (see Section 4), now the distribution of the random surface depth Z∗

n of a con-
ditioned foamed pad after n steps can be determined.

Clearly, Z∗
n is obtained by superposition of the previous solutions; see Figure 6.

Firstly, the pad is treated as in the case of a solid pad. Let Zn be the surface depth after
n cuts. The corresponding probability-density function is approximately

fn(z)=
{ n

h exp
( n

h (z −h)
)

if 0≤ z ≤h,

0 if otherwise.

Now consider any point (r, Zn(r)), where Zn(r) is the value of the random field {Zn(x)}
at the point x . (In the past this value was often simply denoted as Zn .) Because of the sta-
tionarity assumption of the random closed set Ξ, this point can be treated like the origin of
space. Consequently, the additional depth at r caused by a cut pore is either zero (with prob-
ability p) or positive, following the linear contact distribution function Hl . Consequently, Z∗

n
is a sum of two random variables with density functions fn(z) and g(z), with

g(z)=
{

pδ(z)+ (1− p)hl(z) if z ≥h,

0 if z <0,

hl(z)=λ2 exp(−λ2z).

The probability density function of Z∗
n is obtained by convolution (∗) as

f (z)= fn(z)∗ g(z)

f (z)=




n
h (1−p)λ2

n
h +λ2

(exp(λ2(h − z))− exp(−n −λ2z)) if z >h,

p n
h exp( n

h (z −h))+ n
h (1−p)λ2

n
h +λ2

(
exp( n

h z −n)− exp(−n −λ2z)
)

if 0≤ z ≤h,

0 if z <0.

(8)



340 S. Wiegand and D. Stoyan

6. Verification of the stochastic model

This section aims to demonstrate that the basic assumption of the stochastic model of Sec-
tion 4, the exponential form of the linear contact distribution, is realistic. Furthermore, it will
be shown that the main result (8) is in agreement with empirical data.

We start with the linear contact distribution function. Figure 7 shows a thin section of a
utilized Cake-pad ESM-013, obtained by SEM. It is clearly visible that the pores are spheres,
which are considered as the grains in the random-set modelling. Their different grey tones are
caused by different depths of the pores: dark pores have their centres deep in the slice. The
spherical pores in Figure 7 seem to be disjoint, which is not a strong contradiction to the
Boolean-model assumption, since for the sample porosity and intensity λ are small.

It is well known that the projection of a three-dimensional Boolean model onto a plane
forms a planar Boolean model [12, pp. 81 and 82]. Consequently, a planar structure as that
shown in Figure 7 should behave like a planar Boolean model if the spatial structure can be
described by a spatial Boolean model. Measurement of the chord-length distribution function
yielded the histogram represented in Figure 8. It can be well fitted by an exponential function
(p-value 0·22 of χ2-goodness-of-fit-test). Exponentially distributed chord lengths are equiva-
lent to an exponential linear contact distribution function ([12, Equation 6.2.5]). So it can be
concluded that the linear contact distribution function of the projected random set follows an
exponential distribution. Thus an important necessary condition of a Boolean model is satis-
fied.

Next we show in two ways that the result of stochastic modelling of conditioned foamed
pads, formula (6), is in agreement with data obtained from direct measurement and from sim-
ulations.

In [9] the probability-density function of that part of the surface depth that results from
pores was obtained by simulation. There a stochastic model of a porous pad was simulated
and then the ‘intrinsic probability-density function of the line-of-sight surface of foamed pad’
was determined statistically. Figure 11 there is quite similar to our Figure 9; the function
shown in [9] has the same exponential form. Also the function given in Figure 10, which rep-
resents the probability-density function f (z) for surface depth of a conditioned foamed pad,
is quite similar to its counterpart in Figure 12b (solid curve) in [11].

Finally, we performed our own measurements for a particular foamed pad. The surface of
a utilized SUBA pad was analysed by means of a laser topograph. Figure 11 shows the his-
togram of the measured depths, which is based on 10000 values from a line of 1 cm length.

Figure 7. Cross-section of a utilized Cake-pad ESM-
013, by SEM.

Figure 8. Histogram of chord lengths outside the
pores measured in Figure 7.
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Figure 9. Probability-density function hl (z) = λ2 exp
(−λ2z) of the linear contact distribution multiplied
by (1 − p). The value for the volume fraction VV = p
is taken from data by Letitia Malina, Motorola as
p = 0·4. The value for the parameter λ2 = 0·4 is esti-
mated from Figure 11 in Borucki [11]: The value g(z)
of the function in Figure 11 for z = 0 is about 0·24.
The quotient of 0·24 and 1− p =0·6 yields λ2.

Figure 10. Probability-density function f (z) for sur-
face depth of a conditioned foamed pad obtained
by Formula (8). The parameters are the same as in
Figures 3 and 9 above (n =6, h =5, p =0·4, λ2 =0·4).

Figure 11. Histogram of the depths on the surface of
a utilized SUBA 1250 pad.

Figure 12. Fitted probability density function to the
data shown in Figure 11.

Comparison of the corresponding probability-density function estimate in Figure 12 with
Figure 10 shows qualitative similarity. The peak at depth z =20 in Figure 12 corresponds to
the peak at depth z =5 in Figure 10. In both figures a long tail to the right is clearly visible,
a short one to the left. The cusp at depth z =40 on Figure 12 (visualized by the arrow) may
correspond to that at z =5 on Figure 10.

7. Conclusions

In this paper we have developed a model for describing the surface of pads in their depen-
dency on conditioner parameters and pad properties. For this purpose the theory of Borucki
et al. [11] has been extended to the case of foamed pads. The structure of a foamed pad can
be described by methods of the theory of random closed sets. Especially, the linear contact
distribution function Hl yields the contribution to surface depth resulting from pores. In many
cases Hl is (exactly or approximately) an exponential distribution. Superposition of the effects
of conditioning (of a solid pad) and porosity then yields the probability-density function of
surface depth of a conditioned foamed pad. The approximations are acceptable, as shown by
comparison with computed results in [11] and own measurements for a utilized pad.

There are the following relationships between the conditioning process and surface depth
distribution, which can be used to control the distribution of the pad surface depth.
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– The peak of the probability-density function of pad surface depth is at the point of cut-
ting element depth h. Changing h causes a horizontal translation of the peak. Large h
produce much pad removal; much pad removal shortens pad lifetime. Therefore a small
cutting depth h is intended in industry.

– The duration of conditioning expressed by time n is related to the shape of the left part of
the probability-density function of pad surface depth. Longer conditioning yields steeper
slopes. If in this left function part one or more local maxima can be seen, then some irreg-
ularities will exist on pad surface. For taking them off, conditioning has to be applied for
longer times.

– The pad parameter λ2, which is related to the linear contact distribution function, con-
tains important information about the pore distribution. If the pores are small with low
variation, λ2 is large and the right tail of the function is short and steep; large pores with
a high degree of variability are correlated with a long right tail. The two extreme cases are
not useful for polishing. In the first case the pad is too smooth, so the removal will be too
small. In the second case the pad is too rough, which causes too large removal variation
and consequently a rough wafer surface.

– The volume fraction p of pores is closely related to the height of the beginning of the
right tail of the function at depth h (in Figure 10 at f (5)=0·18), for large p the tail begins
at a higher point, for small p at a lower one. In the polishing process, too large and too
small values of p are not useful.
Further investigations should concern the influence of different cutting elements (different

to diamonds), different pad structures, different conditioning process parameters etc. Also the
question of the ideal pad surface needs consideration.
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